VECTOR V-SERIES
1/8-SCALE ON-ROAD GAS RC RACING CAR

INSTRUCTION MANUAL

SPE

EXCITEMENT IN THE FAST LANE

CompetitionX
A WEB SITE FOR THE SERIOUS RACER
Congratulations.
You are now the owner of the most advanced 1/8-scale on-road gas model racing car ever produced. The Vector was engineered using sophisticated computer design equipment, and it represents everything Serpent has learned about model gas cars in the last 20 years.

The Vector is no ordinary car, and this is no ordinary instruction manual. You hold in your hands what we justifiably feel is the best manual made to date. Bar none. We have used perfectly-accurate computer-rendered images to present the building steps. Using the computer images has allowed us to provide clarifying cut-away views that help explain complicated assembly steps. These views would be almost impossible to render using conventional drawing methods. Most assembly steps are explained using numbers for easy readability, but where necessary we have made clarifications in text (all the little racer tricks to build a perfect car are in here). And, perhaps most impressively, we have printed the manual in brilliant full color.

The colors are not merely for appearance sake. We have carefully chosen the coloring so that it helps you understand what is taking place in any particular step. If you are having difficulty understand a step, you should be able to figure out what is taking place simply by looking at the photo before and/or after the step - the colors and relative positions of the different parts will probably be enough to clear things up.

All the assembly steps have large exploded-view drawings. Each part is identified and all the hardware (screws, nuts, bearings, etc.) can be compared to the fold-out full size pictures for quick and easy confirmation.

We strongly recommend that you use this manual together with the Vector Tech Book - the 100-page, 200+ photo technical guide for the car. The Tech Book presents all the information you need to tune the Vector for maximum performance after construction is complete. At certain points while building, you may find it helpful or interesting to refer to the relevant Tech Book page. At these points we have included a small icon: 📚. The lower number in purple refers to the relevant page you should turn to in the Tech Book. We should stress that it is not absolutely necessary to refer to the Tech Book at these points. If you prefer, you can simply proceed ahead in the construction and then, once your car is assembled, refer to the Tech Book for final set-up of the car.

If, despite all our efforts, you have any difficulties or questions, we encourage you to visit our TSN web site (http://www.serpent.com), or contact us by mail, phone, fax or e-mail.

We thank you for racing with the Vector and are certain it will give you many hours of real racing excitement.

Serpent Model Racing Cars bv
CONTENTS:

1. REAR END, part I
2. REAR END, part II
3. REAR END, part III
4. TWO SPEED - ROLL BAR
5. FRONT END, part I
6. FRONT END, part II
7. SHOCK ABSORBERS
8. CENTAX CLUTCH
9. SERVO LINKAGE
10. FINAL ASSEMBLY

MISCELENOUS MATERIALS
1. REAR END, part I

1.1.1 Glue brake pads to the steel plates with quick CA/super glue. Scratch the steel with light sandpaper before gluing to strengthen bonding.

1.5.1 Tighten setscrew onto shaft's flat.

1.5.2 Note orientation of brake ventilator.

Scratch the steel with light sandpaper before gluing to strengthen bonding.
1.2.1 Push pins in until forward end is flush with chassis-bottom.

1.2.2 Push pins in until forward end is flush with outer edge of bearing block.

1.6 Complete assembly.
2. REAR END, part II
(Suspension - Uprights)

2.1.1 Used to adjust the rear down stop point.
2.2.1 Use this hole to push the upper pin out.

2.3.1 Note position of bolt to cock wishbone on pin.

2.4.1 Sometimes small pieces of plastic (flashing) can remain in these holes. Remove them with tweezers.

2.4.2 Adjust to minimum play with the plugs, but maintain the free-movement of the pivot-balls.

2.5.2 Sometimes small pieces of plastic ('flashing') can remain in these holes. Remove them with tweezers.

2.6.1 Important: Lubricate the driveshaft ends with a heavy grease or graphite spray, before inserting.

2.6.2 These balls adjust toe-in and elevated camber.

2.7.1 Screw this in until the upper arm snaps around the bailer press.

2.7.2 Screw this into the upper arms, using a vise and a small socket.

2.8 Complete Assembly.
3.REAR END, part III

(Anti-roll bar - bodymount)

3.1

Rod A

49 mm

3.5

EXPLODED VIEW

SB15 909341 909344
C2

SB6

909345

Rod A

909335, (Opt-Adjustable anti-roll bar)

SB22

909342

909334

Rod B

1646

1647

909346

909344

SB21

SB6
4. TWO SPEED TRANSMISSION

Tools (optional):
- 909595 (gear gripper)
- 909596 (gear-nut wrench)

EXPLODED VIEW
4.2.1 Be sure you have assembled the two-speed as shown in this clarifying cut-away photo.

4.2.2 Start with the sprung screws positioned at this level and adjust later at the track.

4.3.1 Counterclockwise thread

4.3.2 Clockwise thread

4.6.1 Adjust the pressure on the bolts-with-balls: Unscrew both bolts so that the shoes are pulled together by the spring screws. The black second gear should spin freely. Turn one bolt-with-ball in and keep checking the freespin of the gear. Stop screwing in at the point when the gear can not longer spin freely (the shoe is against the housing), then turn the bolt out slightly so the gear can JUST spin freely. Repeat the procedure with the second bolt with ball.
5.1 Note the concaved ring and its orientation.

5.5 EXPLODED VIEW

5. FRONT END, part I
(Axle - Bearing blocks - Mid shaft)

5.1.1 Note the concaved ring and its orientation.
5.2.2 Lubricate one-way bearings with a light, non-sticking oil.

5.2.1 The O-ring must seat into the groove on the axle.

5.6.1 This can be used to adjust overdrive ratio. Start with the standard 25-tooth gear.

5.6.2 Don't tighten the allen-screws yet. Turn them in for only 2-3 strokes.

5.7.1 Tighten the set-screws onto the mid-shaft's flats.

5.7.2 This can be used to adjust overdrive ratio. Start with the standard 25-tooth gear.

5.8 COMPLETE ASSEMBLY
5.2.2 Lubricate one-way bearings with a light, non-sticking oil.

5.2.1 The O-ring must seat into the groove on the axle.

5.6.1 This can be used to adjust overdrive ratio. Start with the standard 25-tooth gear.

5.6.2 Don't tighten the allen-screws yet. Turn them in for only 2-3 strokes.

5.7.1 Tighten the set-screws onto the mid-shaft's flats.

5.7.2 Make sure the O-ring seats properly in the groove.
6.1.1 Used to adjust front down-stops.

6.1.2 Used to adjust front up-stop.

6.5.1 Sometimes small pieces of nylon (flashing) can remain in these holes. Remove them with tweezers.
6.1 Important: Left side steering block has these small circles. Right side does not.

6.3.1 Used to align the front Anti-roll bar.

6.3.1 Insert as shown and adjust at the rack.

6.6.1 Important: Lubricate the drive shaft ends with a heavy grease or graphite spray before inserting.

6.6.2 These balls adjust front track width and camber.
7. SHOCK ABSORBERS

7.1 Fixed Piston
- Easily assemble, assures equal damping between left and right-side shock absorbers.

CONTINUE TO 7.3

7.6

7.11.1 Gently press the tip of the oil bottle against the bladder’s inner surface while pressing the bladder down into position. Excess oil will be squeezed out. Wipe off with a rag. This action will create a proper seal between the bladder and shock body.

7.X

EXPLoded VIEW

FRONT REAR

- Soft White
- Medium Yellow
- Hard Red
- Very Hard Blue

<table>
<thead>
<tr>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=27</td>
<td>L=27</td>
</tr>
<tr>
<td>L=27</td>
<td>L=27</td>
</tr>
<tr>
<td>L=27</td>
<td>L=27</td>
</tr>
</tbody>
</table>

3.4 Gently press the type of oil bottle against the bladder’s inner curved surface. Swirl the type of oil while pressing the bladder down into position. Excess oil will be squeezed out. Wipe this excess off with a rag. This action will create a proper seal between the bladder and shock body.
7.1 Grip the highest thread with wire cutters to attach the tail end. Be careful not to damage the thread.

7.2.1 Note proper orientation of the plastic pieces.

7.3 Steel ring must seat into the groove.

7.4 Lightly oil threads to prevent O-ring damage.

7.4.1 Tip: Before putting the bladder on the top, there should be enough oil in the shock for the oil's air bubbles to rise and burst.

7.5 Place the piston onto the shock top. There should be enough oil in the shock so the seal gets pushed on the rim.

7.6 Pull the piston out. Fill the shock with oil, just under full.

7.7 Place the bladder onto the shock top. There should be enough oil in the shock so that some excess oil spills out now.

7.8 Lightly oil threads to prevent O-ring damage.

7.9.1 Agitate the oil by moving the piston up and down several times.

7.9.2 Wait about 5 minutes for the oil's air bubbles to rise and burst.

7.10.1 Tip: Before putting the bladder on the top, place the piston halfway up the cylinder. After placing the bladder, pull down the piston so the seal gets pushed on the rim.

7.11 Position the pivot points of the rear shocks between the two lips.

7.12 Screw on the shock cap. Be careful not to disturb the bladder seal.

7.13 Pull the piston out. Fill the shock with oil, just under full.

7.14.1 Tip: Before putting the bladder on the top, place the piston halfway up the cylinder. After placing the bladder, pull down the piston so the seal gets pushed on the rim.
8. CENTAX CLUTCH

8.1 Start with one shim here. Your engine may require fewer or more to achieve the right 'gap'. See the Tech book for full info.

8.1.1 Grip the flywheel firmly with large pliers and tighten this nut very firmly.

8.1.2 Very important: Use a high grade thrust bearing grease.

8.2 The complete Centax Clutch assembly.

8.3 Tool to assemble the gears on the clutch housing is available, #909592.
9.1 Insert brake linkage lever first, then assemble pieces of remaining pieces for brakes only.

9.1.3 The brake linkage rod slides through brake lever when rod is pulled.

9.2 Cut a piece of tubing 8 mm long.

9.3 Insert adapter that fits servo brand, e.g., Futaba.

K.O. Propo Samwa
Futaba J.R. Propo Robbe
10. FINAL ASSEMBLY

(Radio installation - Fuel Tank - Belt tensioner - Engine - Exhaust - Tubing - Tire & Wheels)

- Not included in the kit.

909842 (Yellow)
909843 (Grey)
10.1.1 Attach with strong tape, shrink wrap tubing or other means.

10.2.1 You must drill these holes to match your chosen servos.

10.3.1 Note the angle.

10.4.2 Cut pieces 7 mm long.
ENGINE, STARTING, DATA-LOGGING

MEGA Racing Engines: Serpent's choice for power

Developed by Serpent's leading racer and engineer, Michael Salven, and manufactured by Nova Rossi, Mega engines offer the perfect combination of racing performance and manufacturing quality. The SX-21 series engines feature exclusive 5-transfer technology, not found in any other .21-size engine manufactured by Nova Rossi. With the 5-transfer crankcase design, gas flow is optimised for ultimate performance. The availability of both 7-and 5-port liners give you a choice of enhanced high-end or bottom-end torque characteristics. Serpent MEGA tuned pipe systems are designed especially for the MEGA SX-21 engines, and feature the smooth and reliable MasterFix header/pipe joint. MEGA Turbo glowplugs come in six heat-grades and are packed in handy plastic containers.

POWERSTART: Starting has never been easier

With the ultra-light, compact, high-torque Power Start you can easily fire up your engine all weekend long. Over and over again. With dimensions of only 1.9 kg (4.2 lbs.) and 12x10x31cm (5"x4"x12"), the Power Start is easily stored in your equipment cases. Two 540-type motors and two 6-cell battery packs give it outstanding, long-lasting performance. Special chassis alignment fixtures position your Vector chassis directly over the rubber starting wheel, giving you a quick and easy start. Battery power is not wasted, because the starter wheel doesn’t contact the chassis. The Glow-Tronic ignitor is specially made to be fitted inside the Power-Start. It's easily mounted using two screws. This electronic glowplug ignitor is powered by the two 6-cell packs and adjusts itself to any type of glow-plug.

DATA-LOGGING: Performance through knowledge

With Serpent’s unique DRX-2000 miniaturized datalogging system and the sophisticated START software package, RC racing is more exciting than ever before. With the datalogger you can record your car's performance on the track, measure cornering speeds straight-away speed, engine temperature, servo angle, and of course, lap times. The information you record can then be evaluated in respect to the precise chassis and engine set-up information stored in the START software. You can also download sessions and set-up files from TSN on the Internet. This will enable you to compare set-ups and even track performance by overlaying speed curves. Make datalogging part of your hobby. Don’t leave your experience on the track, take it home.
MISCELLANEOUS MATERIALS
(o-rings, shims, c-clips, pins, bearings, screws, bolts, nuts)

O-RINGS:
- **O1**: O-ring, 8x, 3.1 x 1.6 mm
- **O2**: O-ring, 4x, 6 x 1 mm
- **O3**: O-ring, 1x, 10.8 x 1.8 mm
- **O4**: O-ring, 4x, 12.1 x 1.6 mm

SHIMS:
- **S1**: Shim, 2x, 2.5 x 6 mm
- **S2**: Shim, 4x, 7 x 13 mm
- **S3**: Shim, 4x, 12 x 18 mm
- **S4**: Shim, 3x, 5 x 7 mm
- **S5**: Shim, 1x, 10 x 16 x 0.3 mm
- **S6**: Shim, 4x, 7 x 13 mm (thick: 0.1, 0.3, 0.5 mm)
- **S7**: Shim, 4x, 12 x 18 mm
- **S8**: Shim, 3x, 5 x 7 mm
- **S9**: Shim, 1x, 10 x 16 x 0.3 mm
- **S10**: Shim, 4x, 7 x 13 mm (thick: 0.1, 0.3, 0.5 mm)
- **S11**: Shim, 4x, 12 x 18 mm
- **S12**: Shim, 3x, 5 x 7 mm
- **S13**: Shim, 1x, 10 x 16 x 0.3 mm

BEARINGS:
- **B1**: Ball bearing, 2x, 6 x 10 mm, flanged
- **B2**: Ball bearing, 4x, 6 x 13 mm
- **B3**: Ball bearing, 12x, 12 x 21 mm
- **B4**: Ball bearing, 3x, 5 x 8 mm, flanged
- **B5**: Ball bearing, 1x, 5 x 10 mm
- **B6**: Thrust bearing, 1x, F4-9
- **B7**: Ball bearing, 1x, 5 x 8 mm
- **B8**: Ball bearing, 1x, 5 x 10 mm
- **B9**: Ball bearing, 1x, 5 x 10 mm
- **B10**: Ball bearing, 1x, 5 x 10 mm
- **B11**: Ball bearing, 1x, 5 x 10 mm
- **B12**: Ball bearing, 1x, 5 x 10 mm

SCREWS & BOLTS:
- **SB1**: Bolt, allen, 2x, M3 x 4 mm
- **SB2**: Bolt, allen, 10x, M4 x 4 mm
- **SB3**: Bolt, allen, 3x, M4 x 8 mm
- **SB4**: Bolt, allen, 4x, M4 x 10 mm
- **SB5**: Screw, Phillips, 2.9 x 6.4 mm, r.h.
- **SB6**: Screw, Phillips, 4x, 2.9 x 9.5 mm, r.h.
- **SB7**: Screw, Phillips, 2x, 2.9 x 16 mm, r.h.
- **SB8**: Screw, Phillips, 2x, 2.9 x 16 mm, r.h.
- **SB9**: Screw, Phillips, 2x, 2.9 x 16 mm, r.h.
- **SB10**: Screw, Phillips, 2x, 2.9 x 16 mm, r.h.
- **SB11**: Screw, Phillips, 2x, 2.9 x 16 mm, r.h.
- **SB12**: Screw, Phillips, 2x, 2.9 x 16 mm, r.h.
- **SB13**: Bolt, normal, 1x, M2 x 8 mm, f.h.
- **SB14**: Bolt, Phillips, 7x, M3 x 8 mm, r.h.
- **SB15**: Bolt, Phillips, 8x, M3 x 12 mm, r.h.
- **SB16**: Bolt, Phillips, 7x, M4 x 12 mm, c.s.h.
- **SB17**: Bolt, Phillips, 4x, M5 x 12 mm, c.s.h.
- **SB18**: Bolt, allen, 1x, M3 x 10 mm
- **SB19**: Bolt, allen, 4x, M3 x 12 mm
- **SB20**: Bolt, allen, 2x, M3 x 16 mm, r.h.
- **SB21**: Bolt, allen, 2x, M3 x 8 mm, r.h.
- **SB22**: Screw, Phillips, 8x, 2.9 x 13 mm, r.h.
- **SB23**: Bolt, normal, 2x, M3 x 6 mm, f.h.

PINS:
- **P1**: Pin, 5x, 2.5 x 21.8 mm
- **P2**: Pin, 2x, 3 x 11.8 mm
- **P3**: Pin, 3x, 2.5 x 20 mm
- **P4**: Pin, 2x, 3 x 16 mm

NUTS:
- **N1**: Nut, 2x, nylock, M3
- **N2**: Nut, 3x, nylock, M4

PIVOT-PINS:
- **PF1**: Pivot Pin, 2x, 3 x 54 mm
- **PF2**: Pivot Pin, 2x, 3 x 88 mm

SCALE 1 : 1